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Abstract. Gallager codes are the best error-correcting codes to date. In this paper we study them by using
the tools of statistical mechanics. The corresponding statistical mechanics model is a spin model on a
sparse random graph. The model can be solved by elementary methods (i.e. without replicas) in a large
connectivity limit. For low enough temperatures it presents a completely frozen glassy phase (qEA = 1).
The same scenario is shown to hold for finite connectivities. In this case we adopt the replica approach
and exhibit a one-step replica symmetry breaking order parameter. We argue that our ansatz yields the
exact solution of the model. This allows us to determine the whole phase diagram and to understand the
performances of Gallager codes.

PACS. 75.10.Hk Classical spin models – 75.10.Nr Spin-glass and other random models –
89.70.+c Information science

1 Introduction

Information theory [1,2] deals with the problem of reliable
communication through an imperfect (noisy) communica-
tion channel. This can be done by properly encoding the
information message in such a way to increase its redun-
dancy. If a transmission error occurs due to the noise, the
correct message can be restored by exploiting this redun-
dancy.

The price to pay for error-correction to be possible
is to increase the length of the transmitted message, i.e.
to decrease the information rate through the channel.
In 1948 Shannon [3] computed the maximal achievable
rate at which information can be transmitted through a
given communication channel (the so-called capacity of the
channel). Since then a lot of work has been spent for con-
structing practical error-correcting codes that could real-
ize Shannon prediction, i.e. that could saturate the chan-
nel capacity.

In the past few years it has become progressively clear
that such an objective is not unreachable. It has be-
come possible to construct error-correcting codes which
remain effective extremely near to the Shannon capac-
ity [4]. The reasons of this revolution have been the in-
vention of “turbo codes” [5] and the re-invention of “low-
density parity check codes” (LDPCC) [6]. The last ones [7]
were proposed for the first time by Gallager in 1962, but
were soon forgotten afterwards, probably because of the
lack of computational resources at that time.
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As it has been shown by Sourlas [8–10], error-
correcting codes can be mapped onto disordered spin mod-
els. This mapping allows to employ statistical mechanics
techniques to investigate the behavior of the former. Both
turbo codes [11,12] and LDPCC [13–19] have been already
studied using this approach. However all previous studies
were restricted to particular regions of the phase diagram.
The principal technical reason was the difficulty of imple-
menting replica symmetry breaking in finite connectivity
systems.

In this work we focus on regular Gallager codes (a
particular family of LDPCC), and we address the funda-
mental problem of determining the corresponding phase
diagram. There are two type of motivations for such a
task to be undertaken. First, the spin model correspond-
ing to Gallager codes is a disordered spin model on a di-
luted graph. The study of such systems has greatly im-
proved our understanding of glassy systems over the last
few years. Second, it is of great practical importance to
have a complete quantitative picture of the behavior of
Gallager codes. For instance, the existence of a glassy
phase can have important effects on the decoding algo-
rithms, and the knowledge of the phase diagram can be
used to improve them.

The model is presented Section 2. In Section 3 we prove
some exact properties which hold at inverse temperature
β = 1. The line β = 1 can be regarded as the Nishimori
line [20] of the phase diagram. In Section 4 we solve the
model in the large connectivity limit. We show that it be-
comes identical to a simplified model which we call the
random codeword model (RCM). The RCM is shown to
have a freezing phase transition analogous to the one of
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the random energy model (REM) [21]. In Section 5 we
adopt the replica approach [22] and prove that the same
scenario applies for finite connectivities. In particular we
construct a replica symmetry breaking solution of the sad-
dle point equations. The proposed solution is much sim-
pler than the generic one-step replica symmetry breaking
solution. Rather than being parametrized by a functional
over a probability space [23], it depends simply upon the
probability distribution of a local field. Such a probability
distribution can be easily computed numerically. It can be
also obtained from a large connectivity expansion, see Sec-
tion 6. In Section 7 we compute the finite-size corrections
of the free energy for the RCM, and compare the result
with exact enumerations. Finally in Section 8 we discuss
the validity of our replica symmetry breaking ansatz.

2 The model

Let us suppose we want to transmit an information mes-
sage consisting of L bits. There are 2L such messages. Each
of them is encoded in a string of N > L bits (codewords).

This motivates the following model. There are 2L pos-
sible configurations of the system (the codewords), each
one corresponding to a distinct sequence of N > L bits.
We shall denote the codewords as x(α) = (x(α)

1 , . . . , x
(α)
N ),

with α = 1, . . . , 2L. The set of codewords C is a linear
space. This means that 0 ≡ (0, . . . , 0) ∈ C, and that, if
x(α), x(β) ∈ C, then x(α) +x(β) ∈ C (where the sum has to
be carried modulo 2).

Like any linear space, the set of codewords C can be
specified as the kernel of a linear operator. In other words,
we can find an M by N matrix C = {Cij}i=1...M, j=1...N ,
with Cij = 0, 1, and M = N − L, such that

C =
{
x(α) : α = 1, . . . , 2L

}
={

x ∈ {0, 1}N : Cx = 0 (mod 2)
}
· (2.1)

The condition Cx = 0 (mod 2) can be regarded as a set of
M linear equations (called constraints or parity checks) of
the form:

Ci1x1 + Ci2x2 + · · ·+ CiNxN = 0 (mod 2), (2.2)

with i = 1, . . . ,M .
To each bit xi, i = 1, . . . , N , we assign an a priori

probability distribution pi(xi). In the information-theory
context, the a priori distributions pi(xi) are induced by
the observation of the channel output, and by the knowl-
edge of the statistical properties of the channel. We are
interested in studying the induced probability distribution
over the codewords x(α). In other words we want to con-
sider the following probability distribution over the strings
x of N bits:

P (x) =
1
Z
δ[Cx]

N∏
i=1

pi(xi), (2.3)

Fig. 1. Two Tanner graphs: a regular one with (k, l) = (6, 3)
on the left, and an irregular one on the right. In both cases
N = 8, M = 4 (and therefore the rate is R = 1/2).

where Z is a normalization constant; δ[z] = 1 if z =
0 (mod 2), and δ[z] = 0 otherwise.

There are several graphical representations of the
above model. The most used in the coding theory com-
munity makes use of the so-called Tanner graph [24], cf.
Figure 1. This is a bipartite graph which is constructed
as follows. A node on the left is associated to each binary
variable xj , and a node on the right to each constraint,
i.e. to each linear equation (2.2) with i = 1, . . . ,M . There
are therefore N left nodes (variable nodes), and M right
nodes (check nodes). A given check i is connected to the
variables xj which appear with nonzero coefficient in the
corresponding equation (2.2).

The model (2.3) has a spin-wise formulation [13–19]
which we shall employ hereafter. We replace any bit se-
quence x = (x1, . . . , xN ), with a spin configuration σ =
(σ1, . . . , σN ), where σi = (−1)xi . The constraints (2.2) on
the sums of bits xi, get translated into constraints on the
product of spins σi. These have the form

σωi ≡
∏
j∈ωi

σj = +1, (2.4)

where ωi = {j ∈ {1, . . . , N} : Cij = 1}. The other in-
gredient of the model are the a priori probability distri-
butions pi(xi). They can be encoded into properly cho-
sen magnetic fields: pi(xi) = eβhiσi/(2 coshβhi), with
2βhi = log(pi(0)/pi(1)), where we introduced the inverse
temperature β for later convenience. With these building
blocks, we can write down the spin model equivalent of
equation (2.3):

P (σ) =
1

Z(β)

M∏
j=1

δ[σωj ,+1] exp

(
β

N∑
i=1

hiσi

)
, (2.5)

where δ[a, b] is the Kronecker delta function and Z(β) en-
sures the correct normalization (namely

∑
σ P (σ) = 1).

This can be regarded as a spin model with infinite strength
multi-spin interactions (which enforce σωj = +1) and a
random magnetic field.

Instead of insisting on the motivations for the proba-
bilistic model (2.5) coming from coding theory, we shall re-
mark that, as it stands, it is remarkably general. Any spin-
model Hamiltonian H(σ) = −

∑
i1...ip

Jii...ipσi1 . . . σip can
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be written in the form (2.5). This can be done by intro-
ducing the auxiliary spin variables σi1...ip . The Kronecker
delta functions in equation (2.5) can be used to enforce
σi1...ip = σi1 . . . σip . The couplings Jii...ip become mag-
netic fields acting on the variables σi1...ip .

Until now we have been pretty generic in the pre-
sentation of the model. In order to be more precise, we
have to choose the constraint matrix C, and the magnetic
fields {hi}i=1,...,N .

Following Gallager [7], we shall take C to be random
and sparse. More precisely C will be constrained to have
k non-zero elements for each row and l non-zero elements
for each column (with l < k), and not to have two iden-
tical rows1. This choice corresponds to taking the Tan-
ner graph (cf. Fig. 1) as a random bipartite graph, with
variable (left) nodes of fixed degree l, and check (right)
nodes of degree k. We shall choose among the matrices of
this ensemble with flat probability distribution. We shall
use the pair (k, l) to denote the spin model (or the error-
correcting code) defined by this ensemble of matrices. An
important characteristic of the code is its rate R = 1−l/k,
which measures the redundancy of the encoded message
(in fact R = L/N).

The magnetic fields hi will be random i.i.d. vari-
ables with probability distribution ph(hi). We consider
ph(hi) to be biased towards positive values of hi (i.e.∫

dhi ph(hi)hi > 0). We shall refer often to two simple
examples: the two-peak distribution

ph(hi) = (1− p)δ(hi − h0) + pδ(hi + h0), (2.6)

with p < 1/2 and h0 > 0, and the Gaussian distribution

ph(hi) =
1√

2πh̃2
exp

{
− (hi − h0)2

2h̃2

}
, (2.7)

with h0 > 0. It can be shown that, if the model describe
communication through a noisy “symmetric” channel, the
condition

ph(−hi) = e−2hiph(hi) (2.8)

follows. This implies h0 = (1/2) log(1−p)/p for the exam-
ple (2.6) (which corresponds to a binary symmetric chan-
nel), and h0 = h̃2 for the example (2.7) (corresponding to
a Gaussian channel). Hereafter we shall denote with 〈·〉h
and 〈·〉C the averages with respect to the magnetic fields
{hi}, and the ensemble of matrices C.

More details on the model introduced in this sec-
tion, and on analogous examples can be found in refer-
ences [11–19].

3 The Nishimori line

Nishimori [20, 25] showed that the physics of disordered
spin models simplifies considerably on a particular line

1 Remark that, with this choice, some of the parity check
equations (2.2) may be linearly dependent. However, such an
event is rare for k > l [7].

in the phase diagram. In particular, it has been recently
shown [26] that replica symmetry breaking is absent on
this line. The Nishimori line plays a distinguished role
in the correspondence between error-correcting codes and
disordered spin models. As shown in references [27, 28],
maximum a posteriori symbol probability (MAP) decoding
for a given error-correcting code is equivalent to comput-
ing expectation values on the Nishimori line of the corre-
sponding spin model.

In this section we extend the results concerning the
Nishimori line to the model (2.5). We shall consider a
generic magnetic field distribution ph(hi) satisfying equa-
tion (2.8). In this case the Nishimori line is simply given
by β = 1. Although the proofs are very similar to the ones
of references [25,26], we present them for sake of complete-
ness. Some consequences of the exact results of this section
will be outlined in Section 5.

Let us start with some convention. Notice that there
are two sources of disorder in our model (2.3): the mag-
netic field hi (which is determined by the channel output),
and the check matrix C. Different C correspond to dif-
ferent error-correcting codes. In this section we keep the
parity check matrix C fixed, and average uniquely over
the random magnetic fields {hi}, with distribution ph(hi).
Our results will remain valid after averaging with respect
to any ensemble of check matrices C (i.e. to any ensem-
ble of codes). It is convenient to introduce the notation
δC[σ] to denote the product of Kronecker delta functions
in equation (2.5). In other words δC[σ] = 1, if and only if σ
satisfies all the parity checks encoded in C, i.e. if the cor-
responding string of bits x is a codeword. We assume that
the parity check matrix C selects 2L = 2NR codewords.
This means that there are 2L distinct configurations σ,
such that δC[σ] = 1. Finally we shall take the distribution
of the random fields to satisfy the identity (2.8).

We start by writing down the definition of the (field av-
eraged) free energy density fC(β) for a given parity check
matrix C:

− βNfC(β) =
∫ +∞

−∞

N∏
i=1

dhi ph(hi)

× log

∑
σ

δC[σ] eβ
P
i hiσi

 · (3.1)

Then we notice, following reference [25], that the integral
over the field hi can be decomposed into an integral over
its absolute value and a sum over its sign. Using equa-
tion (2.8), we get, for any function O(hi)∫ +∞

−∞
dhi ph(hi)O(hi) =∫ +∞

0

dhi ρ(hi)
∑
τi

ehiτiO(hiτi) , (3.2)

where ρ(hi) is given by

ρ(hi) =
ph(hi) + ph(−hi)

2 coshhi
· (3.3)
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By using the decomposition (3.2) into the definition (3.1),
we get

− βNfC(β) =
∫ +∞

0

N∏
i=1

dhi ρ(hi)
∑
τ

e
P
i hiτi

× log

∑
σ

δC[σ] eβ
P
i hiτiσi

 · (3.4)

To be more compact, we shall use hereafter the shorthand
〈·〉ρ ≡

∫ +∞
0

∏N
i=1 dhi ρ(hi) (·) for the average over the ab-

solute values of the fields {hi}.
The next step consists in performing a gauge transfor-

mation τi → σ′iτi, σi → σ′iσi. Because of the constraint
term δC[σ], the free energy (3.4) is not invariant with re-
spect to such a transformation for a generic choice of {σ′i}.
However, if δC[σ′] = 1, i.e. if σ′ is a codeword, then the
gauge transformation leaves invariant the free energy. We
can sum over all such “allowed” transformations, and di-
vide by their number, namely 2NR, obtaining

− βNfC(β) =

〈
1

2NR
∑
τ

∑
σ′

δC[σ′]e
P
i hiτiσ

′
i

× log

∑
σ

δC[σ] eβ
P
i hiτiσi


〉
ρ

, (3.5)

where the constraint δC[σ′] forces the gauge transforma-
tion σ′ to be an allowed one.

In equation (3.5) we wrote the sums over quenched and
dynamical variables in a symmetric form. This allows to
derive several exact identities for β = 1, where the symme-
try is complete. In particular, let us consider the internal
energy per spin εC(β) = ∂β(βfC(β)). From equation (3.5)
we get

εC(β = 1) =

−
〈

1
2NR

∑
τ

∑
σ

δC[σ]

(
1
N

N∑
i=1

hiτiσi

)
e
P
i hiτiσi

〉
ρ

·

(3.6)

We can now perform a second gauge transformation τi →
τiσi, sum over the {σi} using the constraint, and finally
sum over the τi. We obtain εC(β = 1) = −〈h tanhh〉h.
Analogously to reference [25], we can further simplify this
result, obtaining

εC(β = 1) = −〈h〉h, (3.7)

which is the first important result of this section.
We want now to prove the absence of replica symmetry

breaking on the Nishimori line of our model (2.3), i.e. for
β = 1. As in reference [26], we consider the magnetization

distribution

P
(1)
β,C(m) ≡

∫ +∞

−∞

N∏
i=1

dhi ph(hi)

×
∑
σ δC[σ] eβ

P
i hiσi δ(m−N−1

∑
i σi)∑

σ δC[σ] eβ
P
i hiσi

, (3.8)

and the overlap distribution

P
(2)
β,C(q) ≡

∫ +∞

−∞

N∏
i=1

dhi ph(hi)

×

∑
σ,σ′

δC[σ] δC[σ′] eβ
P
i hiσi+β

P
i hiσ

′
i δ(q −N−1

∑
i σiσ

′
i)∑

σ,σ′
δC[σ] δC[σ′] eβ

P
i hiσi+β

P
i hiσ

′
i

·

(3.9)

As before, we keep the parity check matrix C fixed. We
shall prove that the two probability distributions defined
above are indeed identical on the Nishimori line β = 1,
i.e. P

(1)
1,C(x) = P

(2)
1,C(x). Since the probability distribution

of the magnetization is expected to be a single delta func-
tion2 [22], this implies the absence of replica symmetry
breaking for β = 1.

We begin by using the decomposition (3.2) in equa-
tion (3.8). This yields:

P
(1)
β,C(m) =〈∑
τ

e
P
i hiτi

∑
σ δC[σ] eβ

P
i hiτiσi δ(m−N−1

∑
i σi)∑

σ δC[σ] eβ
P
i hiτiσi

〉
ρ

·

(3.10)

Then we notice that the above distribution is invariant
under an “allowed” gauge transformation τi → σ′iτi, σi →
σ′iσi. As before, “allowed” means that δC[σ′] = 1. We can
therefore average over these transformations, obtaining

P
(1)
β,C(m) =

〈∑
τ,σ′

δC[σ′]

×e
P
i hiτiσ

′
i

∑
σ δC[σ] eβ

P
i hiτiσi δ(m−N−1

∑
i σiσ

′
i)

2NR
∑
σ δC[σ] eβ

P
i hiτiσi

〉
ρ

·

(3.11)

We then insert 1 = (
∑
bσ δC[σ̂]e

P
i hiτibσi)/

(
∑
σ′ δC[σ′]e

P
i hiτiσ

′
i), perform a second gauge transfor-

mation τi → σ̂iτi, σi → σ̂iσi, σ′i → σ̂iσ
′
i, and sum over σ̂.

Finally we set β = 1, obtaining P
(1)
1,C(m) = P

(2)
1,C(m), as

anticipated above.

2 Notice that our model (2.3) has no spin-reversal symmetry.
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4 The random codeword limit

The limiting case k, l→∞, with l/k = 1−R fixed, plays
an important role. We shall call it the random codeword
limit for reasons which will be clear later. It is a non-
trivial limit since the redundancy of the error-correcting
code is kept fixed. From a theoretical point of view, it
allows a simple solution of the model without changing
its qualitative features. Our methods will be similar to
the ones used by Derrida to solve the REM [21]. Finally,
we will show that the corrections for finite values of k
and l are exponentially small in k. Therefore this limit is
interesting also from a quantitative point of view.

4.1 The limit k, l→∞

Let us consider the probability for a given sequence of
bits x = (x1, . . . , xN ) to be a codeword with respect to
the ensemble of parity check matrices C. This coincides
with the probability Pσ for a given spin configuration σ
to satisfy the constraints (2.4). In other words:

Pσ ≡
1
NC

∑
C

M∏
j=1

δ[σωj ,+1], (4.1)

where the sum over C runs over all the matrices of the
(k, l)-ensemble , and NC is their number.

Clearly Pσ depend upon σ uniquely through the mag-
netization mσ ≡ (1/N)

∑
i σi. In general it has the form

Pσ ∼ exp
[
NΣ

(k,l)
1 (mσ)

]
. (4.2)

The function Σ
(k,l)
1 (m) is computed in Appendix A for

general values of k and l, and is not particularly illumi-
nating. However, in the limit k, l →∞, l/k = 1−R fixed,
we have

Σ(k,l)(m)→ −(1−R) log 2, (4.3)

for any −1 < m < 1. In other words any spin configura-
tion σ has the same probability Pσ ∼ 2−(1−R)N of being
a codeword. In addition we must keep track of the com-
pletely ordered configurations σi = +1 for i = 1, . . . , N ,
and σi = −1 for i = 1, . . . , N . The positive one satisfies all
the constraints for any k and l, and for any matrix C (this
configuration is quite important for the thermodynamics
of the model). The negative one satisfies the constraints
for k even, but it is irrelevant for the thermodynamics.

Let us now turn to a slightly more complicated quan-
tity. We consider the joint probability Pσ,τ for two differ-
ent spin configurations τ and σ to satisfy the same set of
constraints (2.4), corresponding to some matrix C taken
from the (k, l)-ensemble. In formulae:

Pσ,τ =
1
NC

∑
C

M∏
j=1

δ [σωj ,+1] δ [τωj ,+1] . (4.4)

As before we can argue that Pσ,τ depends upon σ and
τ only through their magnetizations mσ, mτ , and their
overlap q ≡ (1/N)

∑
i σiτi. The form of Pσ,τ in the ther-

modynamic limit is

Pσ,τ ∼ exp
[
NΣ

(k,l)
2 (mσ,mτ , q)

]
. (4.5)

The function Σ
(k,l)
2 (m1,m2, q) is computed in Ap-

pendix A. Again, we shall not report here the result, but
we remark that in the k, l→∞ limit

Σ
(k,l)
2 (m1,m2, q)→ −2(1−R) log 2, (4.6)

for any −1 < m1,m2, q < 1. In other words, the proba-
bility for two configurations σ, and τ to satisfy the same
set of constraints is Pσ,τ ∼ PσPτ ∼ 2−2(1−R)N : the two
configurations can be regarded as independent ones.

4.2 The random codeword model

The previous considerations allow us to replace (in the
k, l → ∞ limit) the original model (2.5), with the fol-
lowing random codeword model (RCM). The model has
2NR possible states which we shall index with the letter
α = 1, . . . , 2NR. To each of these states we associate a ran-
dom spin configuration σ(α) = (σ(α)

1 , . . . , σ
(α)
N ). By random

we mean that each spin σ(α)
i is chosen independently from

the others, and that σ(α)
i = +1 or −1 with equal probabil-

ity. Let us underline that, in the random codeword model,
the σ(α)

i are quenched variables, the dynamical one being
the index α. There is a second set of quenched variables:
the magnetic fields hi, with i = 1, . . . , N . As in the origi-
nal model we take them to be random i.i.d. variables with
distribution ph(hi). The energy of the state α reads

E(α) = −
N∑
i=1

hiσ
(α)
i . (4.7)

To the 2NR “disordered” states described above we add
the ordered state α = 0, and the corresponding spin con-
figuration σ(0), with σ

(0)
i = +1 for i = 1, . . . , N . This

corresponds to the “all zeros” codeword 0. Its energy is
obviously E(0) = −

∑
i hi.

The random codeword model can be solved through
elementary methods. Here we shall solve it for the ±h0

distribution of fields, see equation (2.6). At the end of
this Section, we shall quote the result for a general dis-
tribution ph(hi). For sake of clarity we shall report the
calculation for this case, which is slightly less straightfor-
ward, in the Appendix B.

We begin by taking into account the “random” states
α = 1, . . . , 2NR. Later we shall consider the contribu-
tion coming from the ordered state α = 0. Let us con-
sider a fixed configuration of the magnetic fields {hi}.
Since the probability distribution of the σ

(α)
i is flat,

P ({σ(α)
i }) = 2−N

2R, we can apply a gauge transforma-
tion σ

(α)
i → εiσ

(α)
i , with εi = ±1, without changing their
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s(
e)

Fig. 2. The microcanonical entropy density of the RCM
with binary field distribution, cf. equation (2.6). Here we set
R = 1/2, p = 0.025, h0 = arctanh(1− 2p). Notice the continu-
ous contribution coming from the random configurations (solid
line), and the isolated ordered configuration (filled circle).

statistical properties. If we choose εi = sign(hi), the en-
ergy (4.7) becomes E(α) = −h0

∑
i σ

(α)
i . We conclude

that, for what concerns the “random” states, the ±h0 field
distribution is equivalent to an uniform field hi = h0.

Now we would like to compute the typical number
Ntyp(ε) of states having a given energy density E(α)/N =
ε. This is equal to the typical number of states having mag-
netization m(α) = −ε/h0. This is a very simple problem.
Define the function

H(x) = −1 + x

2
log(1 + x)− 1− x

2
log(1− x) . (4.8)

ThenNtyp(ε) ∼ exp{NR log 2+NH(ε/h0)}, when |ε| < εc,
and Ntyp(ε) = 0 otherwise. The critical energy εc =
h0ε̂(R) is the positive solution of R log 2 + H(ε/h0) = 0.
The entropy density of the system s(ε) = logNtyp(ε)/N is
depicted in Figure 2. Since s′(−εc) > 0 the (sub)system of
the random codewords undergoes a freezing phase transi-
tion at the critical temperature βc = s′(−εc). This phase
transition is analogous to the one of the REM [21]: it sep-
arates an high–temperature paramagnetic phase from a
low–temperature frozen one.

Let us now consider the ordered state α = 0, whose
energy is given by E(0) = −

∑
i hi. In this case we can

apply the central limit theorem. For N → ∞ the energy
density of the state α = 0 is ε(0) = −(1−2p)h0 with prob-
ability one. We have therefore the following picture of the
energy spectrum of the model: a single ordered state at
ε(0) = −(1−2p)h0, plus a bell-shaped continuum between
−εc(h0) and εc(h0). The ordered state is thermodynami-
cally relevant as long as it is separated by a gap from the
continuum. This happens if p < pc(R), where pc(R) is the
unique solution between 0 and 1/2 of the equation

R log 2 +H(1− 2p) = 0. (4.9)

Notice that equation (4.9) coincide with the equation de-
termining the capacity of the binary symmetric chan-

nel [1]. This means that, in the k, l → ∞ limit, Gallager
codes saturate Shannon capacity.

The free energy is easily determined from the entropy:

f(β) = min
ε

{
ε− 1

β
s(ε)

}
· (4.10)

The phase diagram includes three different phases: a para-
magnetic (P) and a spin-glass (SG) phases, associated
with the continuum part of the energy spectrum; a fer-
romagnetic (F) phase, associated with the ordered state.
The free energy of the paramagnetic phase is given by:

fP(β) = −R
β

log 2− 1
β

log coshβh0. (4.11)

The paramagnetic-spin glass phase boundary is given by
the zero-entropy condition ∂fP/∂β = 0. We obtain the
curve βh0 = arctanh(1 − 2pc(R)) ≡ h∗(R). At the tran-
sition the system freezes and the free energy in the spin-
glass phase is

fSG(β) = fP(β = h∗(R)/h0) =
− h0(1− 2pc(R)). (4.12)

The ferromagnetic free energy is nothing but the energy
of the ferromagnetic state:

fF(β) = −h0(1− 2p). (4.13)

The ferromagnetic-spin glass phase boundary has there-
fore the simple form p = pc(R).

For sake of clarity, let us consider the magnetic field
distribution which describes a binary symmetric channel,
i.e. let us fix h0 = h0(p) ≡ arctanh(1 − 2p), cf. equa-
tion (2.8). The resulting phase diagram is reported in
Figure 3. The ferromagnetic-spin glass phase boundary
is at p = pc(R). The paramagnetic-spin glass boundary
is β arctanh(1 − 2p) = arctanh(1 − 2pc(R)). Finally the
ferromagnetic-paramagnetic phase boundary is given by

R log 2 + log coshβh0(p)
− βh0(p) tanhh0(p) = 0. (4.14)

The triple point is at β = 1, p = pc(R), and lies on the
Nishimori line.

Until now we treated the simple case of a two-peak
distribution of the magnetic fields: ph(hi) = (1− p) δ(hi−
h0) + p δ(hi + h0). What does it happen for a generic
ph(hi)? In Appendix B it is shown that the same scenario
applies with some slight modification. The free energy in
the paramagnetic phase becomes

fP(β) = −R
β

log 2− 1
β
〈log coshβh〉h . (4.15)

The system undergoes a freezing transition at a crit-
ical temperature βc determined from the condition
∂f/∂β|βc

= 0. For β > βc, the system is in a glassy phase
with free energy fSG(β) = fP(βc). Finally, the ferromag-
netic phase coincides with the ordered state α = 0, and
has free energy fF(β) = −〈h〉h.
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Fig. 3. The phase diagram for binary (left, see Eq. (2.6)), and Gaussian (right, see Eq. (2.7)) field distribution. In both cases
the field distribution was chosen to satisfy equation (2.8).

To be specific we report in Figure 3 the phase diagram
for the Gaussian distribution

ph(h) =

√
w2

2π
exp

{
−w

2

2

[
h− 1

w2

]2
}
, (4.16)

which describes a Gaussian channel with noise variance
w. The triple point is located at β = 1 and w = wc(R),
wc(R) being the solution of the equation below

R log 2 + 〈log coshh〉h − 〈h tanhh〉h = 0. (4.17)

It is easy to show that the solution R(w) of the above
equation correspond to the capacity of a Gaussian channel
with constrained binary inputs [2].

5 The replica calculation

As always [22] we compute the integer moments 〈Zn〉h,C of
the partition function by replicating the system n times.
To the leading exponential order we get

〈Zn〉h,C ∼
∫ ∏

σ

dλ(σ)dλ̂(σ) e−NS[λ,bλ], (5.1)

where

S[λ, λ̂] = l
∑
σ

λ(σ)λ̂(σ)− l

k

∑
σ1,...,σk

λ(σ1) · · · · · λ(σk)

×
n∏
a=1

δ[σa1 . . . σ
a
k ,+1]

− log

{∑
σ

λ̂(σ)l
〈

eβh
P
a σ

a
〉
h

}
− l +

l

k
, (5.2)

and σ = (σ1, . . . , σn) is the replicated spin variable. The
calculations which lead to equation (5.2) are completely
analogous to the ones of references [17, 19]. To be self-
contained we shall sketch them in Appendix C. The free
energy f(β) is obtained by taking the saddle point of the

integral (5.1) (let say λ = λ∗n, λ̂ = λ̂∗n) and evaluating
the n→ 0 limit: βf(β) = limn→0 ∂nS[λ∗n, λ̂

∗
n]. The saddle

point equations are

λ̂(σ) =
∑

σ1,...,σk−1

λ(σ1) · · · · · λ(σk−1)

×
n∏
a=1

δ[σaσa1 . . . σ
a
k−1,+1] , (5.3)

λ(σ) =
λ̂(σ)l−1〈eβh

P
a σ

a〉h∑
σ λ̂(σ)l〈eβh

P
a σ

a〉h
· (5.4)

The above equations are satisfied by the totally or-
dered solution λ0(σ) = λ̂0(σ) = δσ,σ0 , where σ0 =
(+1, . . . ,+1). The corresponding free energy is fF(β) =
−〈h〉h. Such a solution is is possible because of the infinite-
strength ferromagnetic interactions in our model (2.3).
Physically it is related to the configuration {σi =
+1}i=1,...,N , which satisfies all the constraints3.

5.1 Stability of the ferromagnetic phase

In the ferromagnetic solution found above (as in the ferro-
magnetic phase found in Sect. 4) the system is completely
ordered (i.e. the magnetization ism = 1). This correspond
to no-error communication in the coding language. Know-
ing the boundaries of the ferromagnetic phase is therefore
of great practical relevance. Here we shall investigate the
issue of local stability. The calculation is similar (although
much simpler) to the one carried out for turbo codes in
reference [12].

We start by computing the replicated action (5.2) for
λ(σ), λ̂(σ) “near” the ferromagnetic saddle point, namely

3 Notice that, for k even, there are 2n solutions of the type
λ(�) = bλ(�) = δ�,� . The “spurious” solutions with � 6= �0

are related to the {σi = −1}i=1,...,N configuration. Since we
took 〈h〉h > 0, these solutions do not have thermodynamical
relevance.
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λ(σ) = λ0(σ) + δ(σ), λ̂(σ) = λ̂0(σ) + δ̂(σ). We first
consider the case l > 2:

δS[λ0, λ̂0] = l
∑
σ

δ(σ)δ̂(σ)

− 1
2
l(k − 1)

∑
σ

δ(σ)2 +
1
2
l δ̂(σ0)2 +O(δ3), (5.5)

where δS[λ0, λ̂0] ≡ S[λ0 + δ, λ̂0 + δ̂] − S[λ0, λ̂0]. It is
convenient to integrate over λ(σ) using the saddle point
equation (5.3), which, for λ(σ) = λ0(σ) + δ(σ), λ̂(σ) =
λ̂0(σ)+δ̂(σ), gives δ(σ) = δ̂(σ)/(k−1)+O(δ2). We finally
get

δS[λ̂0] =
1
2

∑
σ

ζσ δ̂(σ)2 +O(δ2) , (5.6)

where ζσ0 = lk/(k − 1), and ζσ = l/(k − 1) for σ 6= σ0.
We conclude that, for l > 2, the ferromagnetic phase is
always locally stable and its boundaries must correspond
to first order phase transitions.

For l = 2 the situation is physically different. Equa-
tion (5.6) is still valid, with ζσ0 = 2k/(k − 1) and

ζσ = 2

[
1

k − 1
−
〈
eβh

P
a σ

a〉
h

〈eβhn〉h

]
(5.7)

for σ 6= σ0. We have therefore n different eigenvalues ζn,ω,

with degeneracies
(
n
ω

)
, where 2ω ≡ n−

∑
a σ

a. The first

instability occurs for ω = 1. The corresponding critical
line is given by (k − 1)〈e−2βch〉h = 1. This local stabil-
ity condition is already known [29] in the coding commu-
nity, although it has been obtained by completely different
methods.

Hereafter we shall focus on the case l ≥ 3.

5.2 Replica symmetric approximation

The simplest approximation for treating the n→ 0 limit,
consists in choosing λ(σ) and λ̂(σ) to be replica symmet-
ric, i.e. to depend upon σ uniquely through the symmetric
combination

∑
a σ

a. A commonly adopted parametriza-
tion [30] is the following

λ(σ) =
∫

dxπ(x)
eβx

P
a σ

a

(2 coshβx)n
, (5.8)

and the analogous one for λ̂(σ) (with a different distribu-
tion π̂(y)). The replica symmetric order parameters π(x)
and π̂(y) have the physical meaning of probability distri-
butions of cavity fields. In particular

P (H) =
∫

dxπ(x)
∫

dy π̂(y) δ(H − x− y) , (5.9)

is the probability distribution of the effective fields Hi ≡
(1/β)arctanh〈σi〉.

Using the ansatz (5.8), we easily obtain the replica
symmetric free energy:

βfP[π, π̂] =
l

k
log 2− 〈log coshβh〉h

+ l

∫
dxπ(x)

∫
dy π̂(y) log [1 + tβ(x)tβ(y)]

− l

k

∫
dx1 π(x1)· · ·

∫
dxk π(xk)

× log [1 + tβ(x1) . . . tβ(xk)]

−
∫

dy1 π̂(y1)· · ·
∫

dyl π̂(yl)

× 〈log Fl(h, y1, . . . , yl;β)〉h, (5.10)

where we defined tβ(x) ≡ tanhβx and

Fl(y0, y1, . . . , yl;β) ≡
l∏
i=0

(1 + tβ(yi)) +
l∏
i=0

(1− tβ(yi)) . (5.11)

The field distributions π(x) and π̂(y) are determined by
the saddle point equations:

π̂(y) =
∫

dx1 π(x1)· · ·
∫

dxk−1 π(xk−1)

× δ
[
y − 1

β
arctanh(tβ(x1) . . . tβ(xk−1))

]
,

(5.12)

π(x) =
∫

dy1 π̂(y1)· · ·
∫

dyl−1 π(yl−1)

× 〈δ(x− h− y1 − · · · − yl−1)〉h. (5.13)

The above equations can be solved either numerically or in
some particular limit. In the next section we will see that
the expansion around the random codeword limit provides
rather accurate results.

5.3 One step replica symmetry breaking

To go beyond replica symmetric approximation, one has
to divide the n replicas into n/m subgroups of m repli-
cas (with 1 ≤ m ≤ n). The order parameters λ(σ),
and λ̂(σ) depend upon σ through the n/m variables
σ̂α ≡

∑mα
a=m(α−1)+1 σ

a. As discussed clearly in refer-
ences [23, 31], in the n → 0 limit the order parameter
becomes a functional over a probability space and the cal-
culations becomes rather cumbersome (see Refs. [31, 32]
for two viable approaches).

In our case there exists a very simple solution to the
saddle point equations (5.3, 5.4) incorporating one step
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replica symmetry breaking:

λ(σ) =
∑
{sα}

∫
dxπm(x)

eβx
Pn/m
α=1 s

α

(2 coshβx)n/m

×
n/m∏
α=1

αm∏
a=(α−1)m+1

δ[σa, sα], (5.14)

and the analogous one for λ̂(σ) (with a different distribu-
tion π̂m(y)). It is easy to see that the above ansatz satisfies
the saddle point equations as soon as πm(x), π̂m(y) are so-
lution of the replica symmetric equations (5.12, 5.13), with
the substitution h → mh. The phase described by the
solution (5.14) is completely analogous to the spin-glass
phase found in the random codeword model. The system is
frozen in a large number of “optimal” configurations (with
self-overlap qEA = 1). The overlap between two such con-
figurations is q0 =

∫
dxπm(x)

∫
dy π̂m(y) t2β(x+ y).

Such a simple scenario (and the simple solution (5.14))
is possible because the multi-spin interactions of the
model (2.5) have infinite-strength. The existence of other
replica-symmetry-breaking solutions is an open issue, see
Section 8. In the next section we will show that our
ansatz gives back the RCM solution, see Section 4, in the
k, l→∞ limit.

The free energy of the solution (5.14) is fSG,m(β) =
fP(βm), see equation (5.10), and has to be optimized
over m with 0 ≤ m ≤ 1. This procedure yields the spin-
glass free energy fSG(β) = fP(βc), and m = βc/β. The
critical temperature βc is given by the marginality condi-
tion ∂mfSG,m(β)|m=1 = 0, which coincides with the zero-
entropy condition ∂βfP(β)|β=βc = 0.

Let us now draw some consequences of our solu-
tion (5.14) for the phase diagram of the model. Since both
the spin-glass and the ferromagnetic free energies are tem-
perature independent, the ferromagnetic-spin glass phase
boundary must stay parallel to the temperature axis. If,
for instance, we consider the binary field distribution (2.6)
with h0 = arctanh(1− 2p), this boundary is simply given
by p = pc(k, l). Moreover we notice that the energy den-
sity on the line β = 1, see equation (3.7), is equal to the
ferromagnetic free energy. This implies that the entropy
vanishes at the ferromagnetic-paramagnetic boundary for
β = 1. Since the paramagnetic-spin glass boundary is de-
termined by the zero entropy condition, this point must
be the triple point. In synthesis, the main characteristics
of the phase diagram depicted in Figure 3 remain valid for
finite connectivities.

6 Large k, l expansion

Here we show that the replica solution exhibited in the
previous section goes to the random codeword model so-
lution (cf. Sect. 4) when l, k → ∞ at l/k = 1 − R fixed.
Moreover we want to stress that this limit can be useful
from a quantitative point of view. In fact, the corrections
for finite k are exponentially small in k.
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Fig. 4. The phase diagram for the (6, 3) code as computed
from the large k, l expansion (continuous lines), and the one
of the RCM (dashed lines). The vertical dashed line is the
Nishimori line β = 1.

Notice that the free energy in the spin glass phase
fSG(β) is easily obtained from the paramagnetic free en-
ergy fP(β). In fact we have fSG(β) = fP(βc), where the
freezing temperature βc is given by the zero-entropy condi-
tion ∂βfP(β) = 0. Moreover the ferromagnetic free energy
is fF(β) = −〈h〉h, and does not depend upon k and l. It is
then sufficient to solve equations (5.12, 5.13) for large k, l
and evaluate equation (5.10) on the solution. The result
is f (exp)

P (β) (exp stands for “expanded”), and allows to
reconstruct the whole phase diagram as explained above.

The expansion is obtained by noticing that the product
tβ(x1) · · · · · tβ(xk−1) which appears on the right-hand side
of equation (5.12) is exponentially small in k as long as
π(x) is supported on finite values of x. We then expand
the the right-hand side of equation (5.13) for small values
of y and plug the result in equation (5.12).

The calculations are straightforward. For sake of sim-
plicity we show some consequences for the two-peak field
distribution (2.6). We refer to Appendix D for the general
results.

In Figure 4 we report the modified phase diagram for
k = 6, l = 3, as computed using the expansion of Ap-
pendix D (cf. Eq. (D.8)) for the paramagnetic free energy.
We consider the two-peak distribution (2.6) with h0 =
arctanh(1 − 2p). The paramagnetic/spin-glass bound-
ary is obtained by imposing the zero-entropy condition
∂βf

(exp)
P (β) = 0. We set f (exp)

SG (β) ≡ f
(exp)
P (βc). The fer-

romagnetic spin-glass, and ferromagnetic/paramagnetic
boundaries are obtained by imposing fF(β) = f

(exp)
SG (β),

and fF(β) = f
(exp)
P (β).

The triple point is at β = 1, p = pc(k, l). As we
stressed in Section 3, the line β = 1 is of great practical
importance, since it correspond to a widespread decoding
procedure (MAP decoding). The critical noise pc(k, l) has
the meaning of the threshold for no-error communication
under MAP decoding. Since the ferromagnetic-spin glass
phase boundary stays parallel to the temperature axis,
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Fig. 5. The error probability per bit (filled circles and upper
curves), and the entropy (empty triangles and lower curves)
for the (6, 3) model with binary field distribution (2.6). We set
β = 1 and h0 = arctanh(1 − 2p). The symbols are obtained
by solving numerically the saddle point equations (5.12, 5.13).
The dashed lines are the RCM results. The continuous lines
are the results of the large-connectivity expansion.

pc(k, l) is also the threshold for any “finite-temperature”
decoding [27] for β ≥ 1. We get

pc(k, l) = p0
c −

1−R
4H′(1− 2p0

c)
(1− 2p0

c)2k

+O
((

1− 2p0
c

)4k)
, (6.1)

where the function H(x) has been defined in equa-
tion (4.8). In the k, l→∞ limit, we recover the threshold
p0

c ≡ pc(R) of the random codeword model, given by the
solution of equation (4.9). The deviations from the opti-
mal properties of the random-codeword model are expo-
nentially small for large k.

Equations (5.12, 5.13) can be solved numerically
by a “population dynamics” algorithm. One represents
the distributions π(x) and π̂(y) by two populations
{xi}i=1,...,L and {yj}j=1,...,L, and then iterates the equa-
tions (5.12, 5.13). This method has been already used,
for instance, in reference [31]. In Figure 5, we consider
once again the line β = 1 and compare the results of
large k, l expansion with the numerical solution of equa-
tions (5.12, 5.13). We plot both the entropy and the aver-
age error probability per bit 〈Pe〉h,C, where:

Pe =
1
N

N∑
i=1

1
2

(1− sign〈σi〉) , (6.2)

As conclusion let us consider the problem of calcu-
lating the critical noise pc(k, l). This can be obtained
either by solving numerically equations (5.12, 5.13), or
from the expansion (6.1). The numerical solution yields
pc(k, l) = 0.0997(2), 0.1071(2), 0.1091(2), for, respectively,
(k, l) = (6, 3), (8, 4), (10, 5). From the expansion (6.1) we
get pexp

c (k, l) ≈ 0.103965, 0.107783, 0.109195 for the same
values of k and l.

7 Finite size corrections and numerical results

In this section we compare the analytical predictions with
numerical results in order to confirm the validity of the for-
mer and to investigate the nature of finite size corrections.
Needless to say, the last one is a point of utmost practical
importance in coding theory. Indeed it is known that the
thermodynamic limit is approached exponentially fast in
the ferromagnetic phase, at zero temperature [2]. We ex-
pect the same behavior to hold in the whole ferromagnetic
phase.

Here we focus on the paramagnetic-spin glass phase
transition. We compute the finite size corrections to the
free energy of the RCM. This calculation is compared with
exact enumeration calculations on small systems. Then we
switch to the complete model (2.5) and compare the the
numerical results with the outcome of the replica calcula-
tions, cf. Section 5.

7.1 The random codeword model

Let us consider, for sake of clarity, the binary distribu-
tion (2.6) with p > pc(R). This corresponds to focusing
on the paramagnetic-spin glass phase transition. Under
this condition the ordered state α = 0 belongs to the con-
tinuous part of the spectrum and there is no energy gap.
We shall therefore neglect this state. Its contribution is
exponentially small in the thermodynamic limit.

With this assumption, we obtain the following result
for the free energy density

f(β,N) = f0(β) +
1
N
f1(β,N) +O(1/N2), (7.1)

The leading term has been already computed in Section 4.
The first correction f1(β,N) vanishes in the paramag-
netic phase and depends weakly upon N . Explicit formu-
lae are given in Appendix E. In particular f1(β,N) ∼
(1/2βc) logN as N → ∞. The leading correction in the
paramagnetic phase is exponentially small in N . In or-
der to compute it, the ferromagnetic state cannot be ne-
glected.

It is very easy to compute numerically the finite-N free
energy for the random codeword model with binary field
distribution (2.6), as long as we neglect the ordered state.
All we need, for a given sample, is the energy spectrum.
Let us call νk, with k = 0, . . . , N the number of states α,
such that E(α) = −h0(N − 2k). The probability distribu-
tion of the spectrum {νk} is

P ({νk}) =
N !∏N
k=0 νk!

N∏
k=0

pνkk , (7.2)

where
∑
k νk = N ≡ 2NR, and

pk ≡
1

2N

(
N
k

)
· (7.3)

Once the {νk} have been generated with probability dis-
tribution (7.2), the partition function is given by Z(β) =∑
k νk exp{βh0(N − 2k)}.
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Fig. 6. Finite size correction to the free energy (a) and to the entropy (b) of the RCM. The continuous lines are the results of
numerical computations for N = 40, 80, 120, 160, 200 (error bars are not visible on this scale). The dashed lines are the analytical
results for the leading finite size correction, for N = 40, 200 (a) and N = 200 (b).

We considered the RCM with rate R = 1/2 and bi-
nary field distribution (2.6) with h0 = arctanh(1 − 2p).
The phase diagram of this model is depicted in Figure 3.
We fixed the flip probability p = 0.2 to be greater than
the threshold pc(1/2) ≈ 0.110025, and computed the tem-
perature dependence of the free energy by averaging over
105 realizations of the spectrum {νk}.

In Figure 6, graph (a), we plot the quantity
∆f(β,N) ≡ [f(β,N) − f0(β)]N , together with the the-
oretical prediction f1(β,N) for several values of N . In
Figure 6, graph (b), we consider the entropy density
s(β,N) ≡ β2∂βf(β,N): we plot the difference ∆s(β,N) ≡
[s(β,N)−s0(β)]N , for the same values of N , together with
s1(β,N) ≡ β2∂βf1(β,N) for N = 200 (the N dependence
of s1(β,N) is rather weak).

Two remarks can be made by looking at Figure 6.
First, the O(1/N2) terms in equation (7.1) seems to be
rather small. If the temperature is not too close to the
critical point, the finite size corrections are well described
by f1(β,N). Second, the curves for∆f(β,N), see Figure 6,
graph (a), seem to cross at the critical point. This is ex-
pected since ∆f(β,N) ∼ (1/2βc) logN for β > βc, and
∆f(β,N) ∼ e−κN for β < βc. The crossing point βN,N ′
between the curves ∆f(β,N) and ∆f(β,N ′) can be used
to estimate βc. From the data of Figure 6 we get

β40,80 = 1.52(1), β80,120 = 1.51(1),
β120,160 = 1.51(1), β160,200 = 1.51(1), (7.4)

which is in good agreement with the exact result βc ≈
1.50794.

7.2 The (6, 3) model

In this case we are forced to consider quite small systems
since we do not know any simple form for the probability
distribution of the energy spectrum. We must enumer-
ate all the codewords (i.e. the spin configurations which
satisfy the constraints in Eq. (2.5)): this takes at least
O(2NR) operations. Notice that finding the codewords is
a simple task. It suffices to solve the linear system Cx = 0

(mod2). A standard method (we used Gaussian elimina-
tion) takes O(N3) operations [33].

As in the previous Subsection, we fixed considered the
binary field distribution (2.6) with h0 = arctanh(1− 2p),
and p = 0.2. In Figure 7 we plot the results for the
free energy and the entropy densities for systems of size
N = 20, 30, 40 (averaged over Nstat = 1000 samples) and
N = 50 (with Nstat = 20 samples). The numerical results
converge quite well to the theoretical calculation at high
temperature. Below the critical temperature the conver-
gence is very slow, as expected from the analogy with the
RCM example.

The sizes considered here are too small to reach any
definite conclusion on the glassy phase.

8 Discussion

The main result of this paper is the determination of
the phase diagram of regular Gallager codes, see equa-
tion (2.5). This is depicted in Figure 3 for the infinite
connectivity limit. The phase diagram for finite connec-
tivities has been obtained by resorting to the replica
method and looks qualitatively similar. The most impor-
tant quantitative difference is the critical noise level for the
ferromagnetic-spin glass phase transition. This quantity
determines the performances of the corresponding code. It
can be determined either by solving the mean field equa-
tions numerically, see Section 5, or in a large connectivity
expansion, see Section 6. The result of the last computa-
tion is reported in Figure 4.

The replica computation was made possible by the par-
ticularly simple one-step replica symmetry breaking solu-
tion exhibited in equation (5.14). We weren’t able to prove
that the saddle point (5.14) is either unique or the dom-
inant one. There are however several independent indica-
tions which confirm this conclusion:

– The proposed solution is consistent with the absence
of replica symmetry breaking on the β = 1 line, which
has been proved in Section 3.
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Fig. 7. The free energy (left) and the entropy (right) of the (6, 3) model computed by exact-enumeration (symbols), and the
corresponding theoretical predictions (continuous lines). The various symbols refer to different system sizes: N = 20 (triangles),
30 (circles), 40 (stars) and 50 (filled diamonds).

– It has been shown [19,34] that the critical noise level is
the same both for zero-temperature and for tempera-
ture one decoding. This implies that the ferromagnetic-
spin glass phase boundary must pass through the
points (p = pc(k, l), 1/β = 0), and (p = pc(k, l), 1/β =
1), see Figure 4 (for sake of simplicity we referred to
the case of a binary field distribution). This consistent
with our phase diagram.

– Our numerical results, although we restricted to fairly
small systems, do not contradict our conclusions.

It can be interesting to notice that recently [35] a “fac-
torized ansatz” has been proposed as an exact one-step
replica symmetry breaking solution for some diluted spin
models. The solution used in this paper is, in some sense,
complementary to the one of reference [35].

I am grateful to B. Derrida for an illuminating discussion on
the random codeword model, and to N. Sourlas for his constant
support and encouragement. I thank M. Mézard and G. Parisi
for their interest in the subject of this paper. This work was
supported through a European Community Marie Curie Fel-
lowship.

Appendix A: Codewords in the k, l→∞ limit

In this appendix we compute the one-codeword, and two-
codeword probabilities, see equations (4.1, 4.4), for generic
values of k and l. Then we show that, in the k, l→∞ limit,
different codewords become statistically independent, i.e.
Pσ,τ ∼ PσPτ .

The one-codeword probability is, to the leading expo-
nential order:

Pσ ∼
∫ ∏

σ

dλ(σ)dλ̂(σ) exp{NA1(λ, λ̂; c)}, (A.1)

where

A1(λ, λ̂; c) = −l
∑
σ

λ(σ)λ̂(σ)

+
l

2k

(∑
σ

λ(σ)

)k
+

(∑
σ

λ(σ)σ

)k
+ l
∑
σ

c(σ) log λ̂(σ) + l − l

k
, (A.2)

and c(σ) = (1/N)
∑
i δσ,σi characterizes the configura-

tion σ. The above result can be proved by noticing that∑
σ Pσ exp(βh0

∑
i σi) = 〈Z(h0)〉C, where Z(h0) is the

partition function for the model (2.5) with uniform mag-
netic field hi = h0. The average 〈Z(h0)〉C is easily ob-
tained from equations (5.1, 5.2) by setting n = 1 and
ph(hi) = δ(hi − h0).

The integral (A.1) can be done through the saddle
point method. Saddle point equations are more conve-
niently written by eliminating λ̂(σ), and using the vari-
ables λ+ ≡

∑
σ λ(σ) and λ− ≡

∑
σ λ(σ)σ. We get:

λk+ + λk− = 2 , (A.3)

λ−λ
k−1
+ + λ+λ

k−1
− = 2m, (A.4)

where m =
∑
σ c(σ)σ = (1/N)

∑
i σi. For large k, these

equations imply λ+ = 21/k+O(mk), λ− = 21/km+O(mk),
as soon as −1 < m < 1. Substituting in equation (A.2),
we get the result anticipated in Section 4, see equa-
tions (4.2, 4.3).

Let us now consider the two-codeword probability, cf.
equation (4.4). Analogously to equation (A.1) we get:

Pσ,τ∼
∫ ∏

σ,τ

dλ(σ, τ)dλ̂(σ, τ) exp{NA2(λ, λ̂; c)}· (A.5)
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The corresponding “action” is

A2(λ, λ̂; c) = −l
∑
σ,τ

λ(σ, τ)λ̂(σ, τ)

+
l

k

∑
σ1...σk

′ ∑
τ1...τk

′
λ(σ1, τ1) . . . λ(σk, τk)

+ l
∑
σ,τ

c(σ, τ) log λ̂(σ, τ) + l − l

k
, (A.6)

where c(σ, τ) = (1/N)
∑
i δσi,σδτi,τ , and the sums

∑′ are
restricted to σ1 · · ·σk = +1 and τ1 · · · τk = +1. As before
we notice that

∑
σ,τ Pσ,τ exp(βh1

∑
i σi + βh2

∑
i τi) =

〈Z(h1)Z(h2)〉C can be obtained through a standard replica
calculation, see Section 5 and Appendix C, with n = 2
replicas.

We now define the variables λ0 ≡
∑
σ,τ λ(σ, τ),

λσ ≡
∑
σ,τ λ(σ, τ)σ, λτ ≡

∑
σ,τ λ(σ, τ)τ , and λστ ≡∑

σ,τ λ(σ, τ)στ . The saddle point equations can be written
in terms of these variables as follows:

λk0 + λkσ + λkτ + λkστ = 4, (A.7)

λσλ
k−1
0 + λ0λ

k−1
σ + λστλ

k−1
τ + λτλ

k−1
στ = 4mσ, (A.8)

λτλ
k−1
0 + λστλ

k−1
σ + λ0λ

k−1
τ + λσλ

k−1
στ = 4mτ , (A.9)

λστλ
k−1
0 + λτλ

k−1
σ + λσλ

k−1
τ + λ0λ

k−1
στ = 4q, (A.10)

where mσ =
∑
σ,τ c(σ, τ)σ = (1/N)

∑
i σi, mτ =∑

σ,τ c(σ, τ)τ = (1/N)
∑
i τi, and q =

∑
σ,τ c(σ, τ)στ =

(1/N)
∑
i σiτi. From equations (A.7–A.10), we get, for

k → ∞, λ0 ' 41/k, λσ ' 4(1−k)/kmσ, λτ ' 4(1−k)/kmτ ,
λστ ' 4(1−k)/kq, as soon as −1 < mσ,mτ , q < 1.
The corrections to this asymptotic behavior are of or-
der O(mk

σ,m
k
τ , q

k). Substituting this solution in equa-
tions (A.5, A.6), we get the results (4.5, 4.6).

Appendix B: The random codeword model
for a generic field distribution

In this appendix we solve4 the RCM for a generic field
distribution ph(hi). The strategy is to start from a discrete
distribution

ph(hi) =
M∑
q=1

pq δ
(
hi − h(q)

)
, (B.1)

and then approximate a generic ph(hi) by lettingM→∞.
Let us consider the distribution (B.1). In the typical

sample there will be N1 ≈ Np1 sites with field hi = h(1)

(which we can suppose, without loss of generality, to be the
sites i = 1, . . . , N1), N2 ≈ Np2 sites with field hi = h(2)

(let us say for i = N1 + 1, . . . , N1 + N2), and so on. For
a given spin configuration σ, we define the partial mag-
netization mq(σ) as the magnetization of the sites whose

4 I am deeply indebted with B. Derrida who explained to me
how to treat this general case.
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Fig. 8. The RCM for ph(hi) = (2/5) δ(hi−1/2)+(3/5) δ(hi−
1). The continuous line encircles the region Ω (see text). The
dashed line is the curve m1 = tanh β/2, m2 = tanhβ, which
intersect the boundary of Ω for β = βc.

magnetic field is h(q). With the labeling of the sites chosen
above we get

mq(σ) ≡ 1
Nq

Nq∑
i=Nq−1+1

σi, (B.2)

where Nq = N1 + · · · +Nq. We call {mq(σ)} the magne-
tization profile of the configuration σ.

We now consider the 2NR states α = 1, . . . , 2NR. To
each of them it is associated a random codeword σ(α),
where the σ

(α)
i are quenched variables drawn with flat

probability distribution. We ask ourselves what is the typ-
ical number Ntyp({mq}) of states α having a given magne-
tization profile mq(σ(α)) = mq. The answer is quite easy.
Define the function G({mq}) as follows

G({mq}) = R log 2 +
M∑
q=1

pqH(mq), (B.3)

where H(x) is given in equation (4.8). The typical number
Ntyp({mq}) is obtained from G({mq}) through the usual
construction:Ntyp({mq}) ∼ exp[NG({mq})] if G({mq}) >
0 and Ntyp({mq}) = 0 otherwise. The convex region
Ω ≡ {{mq}|G({mq}) > 0} is depicted in Figure 8 for
the caseM = 2.

The energy of a state α can be written in terms of
its magnetization profile: E(α) = −N

∑
q pqh

(q)mq(σ(α)).
The free energy density can therefore computed from
Ntyp({mq}) as follows:

f(β) = min
{mq}

{
− 1
β
Ĝ({mq})−

M∑
q=1

pqhqmq

}
, (B.4)

where Ĝ({mq}) ≡ (1/N) logNtyp({mq}) (i.e. Ĝ({mq}) =
G({mq}) inside Ω, and Ĝ({mq}) = −∞ outside).
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If the expression (B.3) is used in equation (B.4), one
gets the saddle point condition mq = tanhβhq. This de-
scribes a curve in the {mq} space which start at mq = 0
for β = 0, and ends at mq = signhq for β = ∞. The
corresponding free energy reads

fP(β) = −R
β

log 2− 1
β

M∑
q=1

pq log coshβhq . (B.5)

At some critical temperature β = βc the curve mq =
tanhβhq crosses the boundary of Ω. The saddle point
mq = tanhβhq is no longer valid for β > βc. The crit-
ical temperature can be computed from the zero entropy
condition ∂βfP|β=βc = 0. For β > βc the entropy vanishes
and the free energy is frozen to its value at the critical
point: fSG(β) = fP(βc). As in Section 4, we must include
in our analysis the ordered state α = 0 whose free energy
is fF(β) = −〈h〉h.

The solution for a continuous field distribution ph(hi)
follows from the above results by taking the M → ∞
limit in equation (B.5). This yields equation (4.15). Al-
ternatively we could have started with a continuous mag-
netization profile m(h) from the very beginning of this
appendix.

Appendix C: The derivation of equation (5.2)

We start by writing down the partition function of the
model (2.5):

Z(β) =
∑
σ

M∏
j=1

δ[σωj ,+1] e
P
i hiσi . (C.1)

We rewrite the constraint term (i.e. the product of Kro-
necker delta functions) by introducing the quenched vari-
ables Dω = 0, 1, where ω = (iω1 , . . . ,

ω
k ) runs over the k-

plets of site indices. The variables Dω are defined by set-
ting Dω = 1 if ω = ωj for some j = 1, . . . ,M and Dω = 0
otherwise. With this definition we can write the replicated
partition function as follows

〈Zn〉 =
1
N
∑
{D}

∑
{σ}

N∏
i=1

〈
eβh

P
a σ

a
i

〉
h

×
∏
ω

{1−Dω +Dωδn[σω]}, (C.2)

where σω ≡ (
∏k
r=1 σ

1
iωr
, . . . ,

∏k
r=1 σ

n
iωr

), δn[σ] ≡∏n
a=1 δ[σ

a,+1], and N is a normalization constant (to be
computed later).

According to our choice of the ensemble of check ma-
trices, we must impose

∑
ω3iDω = l, for any i = 1, . . . , N .

This can be done by using the identity

δ

[∑
ω3i

Dω, l

]
=
∮

dzi
2πi

1
zl+1
i

z
P
ω3iDω

i , (C.3)

where the integration path encircles the origin in the com-
plex zi plane. We get

〈Zn〉 =
1
N ′
∑
{σ}

N∏
i=1

∮
dzi
2πi

1
zl+1
i

〈
eβh

P
a σ

a
i

〉
h

×
∏
ω

1∑
Dω=0

w(Dω){1−Dω +Dωδn[σω]} zDωω , (C.4)

where zω ≡
∏
i∈ω zi. The weights w(Dω) have been intro-

duced for later convenience, and correspond to a rescaling
of the {zi}. Their contribution can be readsorbed by the
normalization constant N ′. We set w(1) = l(k−1)!/Nk−1

and w(0) = 1 − w(1). Now we can sum over the Dω, ob-
taining

〈Zn〉 =
1
N ′′

∑
{σ}

N∏
i=1

∮
dzi
2πi

1
zl+1
i

〈
eβh

P
a σ

a
i

〉
h

× exp

{
Nl

k

∑
σ1,...,σk

cz(σ1) . . . cz(σk)
n∏
a=1

δ[σa1 . . . σ
a
k ,+1]

}
,

(C.5)

where cz(σ) ≡ (1/N)
∑
i ziδσ,σi . Finally we introduce the

order parameter λ(σ) and its complex conjugate λ̂(σ), by
using the following identity

exp{NF [c]} =
∫ ∏

σ

Nl

π
dλ(σ)dλ̂(σ)

×exp

{
−Nl

∑
σ

λ(σ)λ̂(σ) +NF [λ] +Nl
∑
σ

λ̂(σ)cz(σ)

}
·

(C.6)

The use of the above identity allows to integrate over the
{zi}, obtaining equations (5.1, 5.2). The overall normaliza-
tion constant can be fixed by requiring 〈Zn〉 ∼ 2Nn(1−l/k)

for hi = 0.

Appendix D: Large k, l expansion: general
formulae

Let us define tp ≡ 〈tanhβh〉h. We assume formally tp =
O(tp) where t is “small” and expand in tk to the order
t3k. All the observables can be expressed in terms of the
order parameters π(x) and π̂(y). The solutions of equa-
tions (5.12, 5.13) admit an expansion of the form

π(x) = ph(x) +
∞∑
m=1

πmβ
−mp

(m)
h (x);

π̂(y) = δ(y) +
∞∑
n=1

π̂nβ
−nδ(n)(y), (D.1)

where p(m)
h (x) ≡ ∂mx ph(x) and δ(n)(y) = ∂ny δ(y). Moreover

one gets πm, π̂m = O(tmk). The results for the first few
coefficients are listed below:
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π1 = −(l− 1)tk−1
1 − (k − 1)(l − 1)2(1− t2)t2k−3

1

− 1

3
(l− 1)tk−1

3 − 1

2
(k − 1)(k − 2)(l− 1)3(1− t2)2t3k−5

1 − (k − 1)2(l− 1)3(1− t2)2t3k−5
1

+ (k − 1)(l− 1)2(t1 − t3)tk−1
2 tk−2

1 + (k − 1)(l− 1)2(l− 2)(t1 − t3)t3k−4
1 +O(t4k), (D.2)

π2 =
1

2
(l− 1)tk−1

2 +
1

2
(l− 1)(l − 2)t2k−2

1

+ (k − 1)(l− 1)2(t1 − t3)tk−2
2 tk−1

1 + (k − 1)(l− 1)2(l− 2)(1− t2)t3k−4
1 +O(t4k), (D.3)

π3 = −1

6
(l− 1)tk−1

3 − 1

2
(l− 1)(l− 2)tk−1

2 tk−1
1 − 1

6
(l− 1)(l− 2)(l− 3)t3k−3

1 +O(t4k), (D.4)

bπ1 = −tk−1
1 − (k − 1)(l − 1)(1− t2)t2k−3

1

− 1

2
(k − 1)(k − 2)(l− 1)2(1− t2)2t3k−5

1 − (k − 1)2(l− 1)2(1− t2)2t3k−5
1

+ (k − 1)(l− 1)(t1 − t3)tk−1
2 tk−2

1 + (k − 1)(l− 1)(l− 2)(t! − t3)t3k−4
1 − 1

3
tk−1
3 +O(t4k), (D.5)

bπ2 =
1

2
tk−1
2 + (k − 1)(l− 1)(t1 − t3)tk−2

2 tk−1
1 +O(t4k) (D.6)

bπ3 = −1

6
tk−1
3 +O(t4k). (D.7)

See equations (D.2–D.7) above.

The result for the paramagnetic free energy is

βfP(β) = −R log 2− 〈log coshβh〉h

− l

k
tk1 −

1
2
l(l− 1)(1− t2)t2k−2

1 +
1
2
l

k
tk2

− 1
2

(k − 1)l(l − 1)2(1− t2)2t3k−4
1

+
1
3
l(l− 1)(l − 2)(t1 − t3)t3k−3

1

+ l(l − 1)(t1 − t3)tk−1
1 tk−1

2 − 1
3
l

k
tk3 +O(t4k).

(D.8)

Appendix E: Finite size corrections
for the random codeword model

Let us consider the binary field distribution (2.6) with
h0 = 1. The results for a generic value of h0 are ob-
tained after a trivial rescaling of energies and tempera-
tures: f(β, h0;N) = h0f(βh0, 1;N).

As explained in Section 7, the finite size corrections at
the paramagnetic-spin glass phase transition can be stud-
ied by neglecting the ordered state. This introduces expo-
nentially small errors. The calculation of the free energy
can be done along the lines of reference [21], Appendix B,
which starts from the identity:

〈logZ〉 =
∫ ∞

0

dt
t

(
e−t − e−tZ

)
. (E.1)

We limit ourselves to quoting the outcome of the calcu-
lation. For β < βc, we get f(β,N) = fP(β) + O(e−κN )5.

5 Obviously the ordered state cannot be longer neglected in
computing κ.

For β > βc we get equation (7.1), with

f0(β) = −ε̂(R),

f1(β,N) =
∫ ∞

0

dφρ(φ) e−φ + γ/β, (E.2)

γ ≈ 0.577216 being the Euler constant. The function ρ(φ)
is defined as the (unique) solution of

βcρ+ logΨ (−Nε̂+ ρ) =

log(φ) +
1
2

log
[π

2
N
(
1− ε̂2

)]
, (E.3)

where −ε̂(R) is the ground state energy density in the
thermodynamic limit, see Section 4. The function Ψ(x) is
defined as follows

Ψ(x) =
+∞∑
q=−∞

e−βc(2q+x)
[
1− exp

(
−eβ(2q+x)

)]
. (E.4)

Notice that Ψ(x + 2) = Ψ(x). The logΨ term in equa-
tion (E.3) gives therefore an oscillating N dependence to
f1(β,N). Moreover, since Ψ(−Nε̂ + ρ) remains finite for
any N and ρ, f1(β,N) ∼ (1/2βc) logN as N → ∞. Fi-
nally we remark that the sum in equation (E.4) diverges as
β ↓ βc. This gives the singularity of the free energy correc-
tions at the critical point: f1(β,N) ∼ (1/βc) log(1−βc/β).
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